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ARTICLE INFO ABSTRACT

Article history: Substantial evidence indicates that stress can precipitate or worsen symptoms of inflammation in general
Received 18 February 2013 and more specifically in multiple sclerosis (MS), a demyelinating, autoimmune disease characterized by
Accepted 28 February 2013 inflammation of the central nervous system (CNS). However, the mechanism of how stress affects MS is

Available online 26 March 2013 not well understood. We reviewed publications in PubMed since 1995 and propose that neuropeptides

secreted under stress, such as corticotropin releasing hormone (CRH) and neurotensin (NT), activate microglia
and mast cells to release inflammatory molecules. These lead to maturation and activation of T17 autoimmune
cells, disruption of the blood-brain barrier (BBB) and T cell entry into the CNS, thus promoting brain inflamma-
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such as infections, toxins, immunizations, trauma, sunlight exposure
and hormonal variables have been implicated [2]. Although MS affects
young women more often than men, male gender has been associated
with a poorer prognosis. This could be attributed to a possible protective
role that estrogen or progesterone may have in the severity of the
disease, but not in the risk of MS [3-5].

Increasing evidence indicates that stress can worsen immunity [6]
and brain inflammation [7,8], which is important in the pathogenesis
of MS [9], and neuropsychiatric disorders in general [10,11]. We
reviewed publications in PubMed since 1995 that report any association
between stress, neuropeptides, microglia, mast cells and MS.

2. Correlation between stress and MS
2.1. Human studies

Increasing evidence indicates that symptoms in relapsing-remitting
MS may be precipitated or exacerbated by stress [12]. A meta-analysis
of 14 studies (case-control and longitudinal prospective) published in
2004, showed that there is a significant association between stressful
life events and subsequent relapses of MS in humans [13]. A cohort
study in Denmark examined the association between MS and a major
stressful life event, the death of a child. The study comprised 21,062
parents who had lost a child and 293,745 matched parents who had
not lost a child. The study indicated a significantly higher MS risk in
parents who lost a child than in parents who did not for at least
8 years [14]. MS relapses, in a population of 50 female MS patients in
the USA, were more likely during at-risk periods following stressful
life events and were relatively independent of the threat level and
type of stressor [ 15]. In a study conducted in Greece, cumulative stressful
life events were shown to pose a greater risk for relapse in ambulatory
women with relapsing-remitting MS [16]. Duration was the only stress
attribute that seemed to increase the risk for relapsing in contrast to
stress type and stress severity [16]. In another Greek study, 37 female
patients kept diaries of stressful life events and anxiety levels that
were subsequently ranked according to the Holmes and Rahe Social
Readjustment Rating Scale and the Hamilton Rating Scale for Anxiety,
respectively. Multiple reported stressful life events and elevated levels
of anxiety were each found to be significantly associated with increased
risk for relapse of MS [17]. A Lebanese study of 216 patients showed an
increase in both clinical relapses and MRI disease activity in patients
with MS during periods of war stress [18]. This is in line with an earlier
study of 156 patients in Israel that reported that civilian exposure to war
stress is associated with increased risk for MS relapses [19].

In a case-control study of 100 MS patients compared to hospital
controls, significantly more MS patients reported that they were
under unusual stress in the 2 year period prior to onset age [20]. Also,
a comparison of 95 pairs of MS patients revealed that patients in relapse
scored higher on emotional disturbance and intensity of stressful events
than patients in remission [21]. An American study of 55 MS patients
showed that patients who experienced qualitatively extreme stressful
events were 37 times more likely to relapse than those not exposed to
such events [22]. A comparison of 39 patients with early MS and 40
matched non-patient volunteers in another American study revealed
that the proportion of MS patients who experienced marked life adver-
sity in the year prior to onset of symptoms was significantly higher than
for non-patients in the year before interview [23]. Similar results were
reported in a study of 73 patients in Netherlands in which stressful
events were associated with increased relapses in relapsing-remitting
MS [24]. Finally, in a one year study, 48 women with relapsing-remitting
MS were divided into two groups, either receiving the anti-anxiety/
anti-depressant drug escitalopram daily or continuing with MS treat-
ment as usual, and stressful life events were documented weekly.
The risk for relapse was 2.9 times higher for controls than for the
escitalopram-treated patients [25]. Table 1 lists studies reporting
stress-MS association in humans.
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Table 1
Studies in humans reporting correlation between stress and MS.
Type of stress n Outcome Reference
Death of child 21,062 parents The exposed parents  [14]
exposed had a significant
293,745 not increased risk of MS
exposed for at least 8 years of
follow-up.
Stressful life events 50 Relapses were more [15]
(SLE) as reported likely during at-risk
weekly assessed periods following the
with the Life Events events.
and Difficulties
Schedule
Diaries of SLE ranked 37 High levels of anxiety [17]
according to the were strongly related
Holmes and Rahe with the advent of
Social Readjustment relapse in the
Rating Scale. Anxiety following period.
assessed with the
Hamilton Rating
Scale for anxiety
War stress 216 Significant increase in  [18]
the number of
relapses during war
period than during
non-war periods
War stress 156 Increased number of  [19]
relapses during the
war period
SLE in self-report 26 Three or more SLEina [16]
diaries classified as 4 week period led to 5
short or long-term. times increase of MS
Severity determined relapse rate.
using the Recent Life
Change
Questionnaire
Life stress 100 MS patients Significantly more MS  [20]
compared to patients than controls
controls reported that they
were under unusual
stress in the 2 year
period prior to onset
age. MS patients de-
scribed a greater
number of SLE.
SLE assessed by the 55 Patients who [22]
Psychiatric experienced
Epidemiology qualitatively extreme
Research Interview events were 37 times
more likely to relapse
as those not exposed
to such events.
SLE 39 MS patients and  The proportion of MS ~ [23]
40 matched controls patients who experi-
enced marked life ad-
versity in the year
prior to onset of
symptoms was signif-
icantly higher than for
non-patients in the
year before interview.
Emotional stress 95 pairs of MS Patients with MS ex-  [21]

patients in relapse
and remission

acerbation scored
higher on emotional
disturbance and in-
tensity of stressful
events than patients
in remission.

2.2. Animal studies

In mice with Theiler's murine encephalomyelitis virus (TMEV)
infection, a well characterized model of MS, restraint stress during
early infection increased CNS lesion formation during the late phase
[26]. Restraint stress in animals infected with TMEV had a global



A. Karagkouni et al. / Autoimmunity Reviews 12 (2013) 947-953 949

immunosuppressive effect on the immune response to infection [27],
leading to increased mortality rates, decreased numbers of lymphocytes
and increased numbers of neutrophils in the blood [28]. This paradigm
also exacerbated acute CNS infection and subsequent demyelination
[29]. Maternal separation (180 min/day) impaired host resistance
during infection and prolonged TMEV [30]. A significant increase in
the severity of neurological signs was noted along with pathological
lesions of the spinal cord in stressed rats compared to non-stressed
rats; treatment with alprazolam reversed the adverse effects of stress
[31]. However, another study using Theiler's virus-induced demyelinating
disease (TVID) in the resistant C57BL/6 mouse strain suggested that stress
alone is not sufficient to overcome genetic resistance to TVID [32]. Acute
restraint stress disrupted the BBB and substituted for diphtheria toxin
permitting the development of myelin basic protein-induced EAE sooner
in rats [33]. Administration of diazepam for 6 days, starting at day 6 or 11
after active induction of experimental allergic encephalomyelitis (EAE),
an animal model for MS, led to a marked decrease of disease incidence,
reduced histological signs associated with the disease, as well as cellular
reactivity and antibody responses against the encephalitogenic MBP
[34]. Table 2 lists studies showing stress-EAE association in animals.

3. Involvement of microglia and mast cells

Recent evidence indicates that microglia play an important role in
the pathogenesis of MS. The most intense microglia infiltration has
been observed in acute MS cases in which the acute stage inflammatory
macrophage markers MRP14 and 27E10 were expressed [35]. It has also
been shown that in a specific subtype of MS, where hypoxia-like lesions
exist, microglial activation is prominent and precedes T-cell infiltration
and demyelination [36]. Moreover, brain pathological findings from
patients who died of MS exhibited extensive oligodendrocyte apoptosis
and microglial activation in the relative absence of T-cells [37]. Actually,

Table 2

Studies in animals reporting correlation between stress and EAE.
Type of stress Outcome Reference
Restraint stress (mice restrained Inflammation and demyelination [26]

in ventilated 60 ml plastic were significantly increased in spinal

syringes in their home cages) cords of stressed mice. Axonal

degradation was increased in

demyelinated areas in stressed mice.

Stress had a global [27]

immunosuppressive effect on the

immune response to infection. The

adverse effects of stress were

mimicked by dexamethasone,

implicating a major role for

glucocorticoids.

Restraint stress (mice placed in  Stress decreased both type 1 and type [141]
well ventilated restraining 2 responses to infection.
tubes, 2-3 c¢m internal
diameter and 8 cm length)

Maternal separation

Restraint stress

Maternal separation 180 min/day [30]
impaired host resistance during
infection and delayed the kinetics of
viral clearance.
Restraint stress (mice placed in Increased mortality rates were [28]
well ventilated restraining observed in restrained mice, which
tubes, 2-3 cm internal also developed higher CNS viral titers.
diameter and 8 cm length) Restrain-stressed mice developed
decreased numbers of lymphocytes
and increased numbers of neutro-
phils in the blood.
Social disruption stress applied prior [93]
to infection led to more severe
disease course, with increased
inflammation.
Restraint stress (mice restrained Chronic restraint stress during early — [29]
in ventilated 60 ml plastic infection exacerbated acute CNS
syringes in their home cages) infection and the subsequent
demyelination.

Social disruption stress

microglia act as antigen-presenting cells for naive T-cells, thus expanding
the number of encephalitogenic Th1 cells [38]. Moreover, microglia have
the ability to produce glutamate and nitric oxide (NO), which have a
direct effect on the death of neurons. NO also has a cytotoxic effect on
the endothelium and contributes to the BBB disruption [38], which is
known to precede many pathological or clinical symptoms of MS
[39,40]. Furthermore, dying oligodendroglial cells recruit microglia
which, in the presence of IFN-vy activation, induce contact-dependent
oligodendroglial death [41]. Lastly, microglia are a rich source of reactive
oxygen species (ROS), and various pro-inflammatory cytokines/
chemokines and proteases [42].

On the other hand, microglia might have a role in the termination of
the inflammatory reaction by suppressing lymphocyte reactivity through
NO release [43]. In fact, a strong accumulation of CD 163(+) microglia
with anti-inflammatory effects was found in acute active MS lesions
and at the rim of chronic active lesions, possibly involved in the resolu-
tion of the inflammation [44]. Microglia also phagocytose apoptotic
T-cells, even though this mechanism seems to be defective in MS [38].

It has been shown that in mice with EAE, microglial activation
persists during the chronic phase of the disease, while T cell infiltrates
are predominant during the acute phase of the disease [45]. Microglia
participate in the pathogenesis of EAE not only by phagocytosing
myelin and thus leading to demyelination [46], but also by releasing
TNF-q, IL-1, IL-6 and chemokines, which promote inflammation during
the course of the disease [47]. In fact, Lewis rats which are susceptible to
EAE showed suppression of disease progression upon elimination of
microglia [48].

MS is mediated primarily by brain infiltration of Th1 cells and
macrophages [49], but Th2 processes typically associated with allergic
reactions, which involve mast cells, are also implicated [50-52]. Mast
cells have been reported in MS plaques [53] and could stimulate demy-
elination directly [54-56]. Clinical evidence supporting the involvement
of brain mast cells in MS comes from the fact that the unique mast cell
protease tryptase [57] and histamine [58] were elevated in the CSF
of MS patients. Moreover, gene microarray analysis of MS plaques
revealed increased expression of 5-lipoxygenase in acute lesions and
the FceRI receptor in chronic lesions, both of which are associated
with mast cells [59,60]. Mast cells are also involved in Th17 maturation.
Th17 cells are differentiated by the combined action of IL-6 and TGF-p
to secrete IL-17 [61], shown to be critical for the pathogenesis of auto-
immune diseases, including MS [61,62]. TNF-o and vasoactive intestinal
peptide (VIP) can also induce Th17 maturation independently of IL-6
[63].Itis noteworthy that IL-6, TGF-3, TNF-ct, and VIP can all be secreted
by mast cells [64-66]. In fact, mast cells can even secrete IL-17 on their
own [67]. Mast cell mediators can recruit and activate T cells, as well as
permit them to enter the brain by disrupting the BBB [68]. Mast cells
stimulated by FceRI aggregation released TNF-ae and activated T cells
[69], but direct contact was also required [70]. Mast cell-derived leuko-
triene B4 promotes T cell migration [71]. Fig. 1 proposes a set of interac-
tions between mast cells and T-cells.

In EAE, mast cells are required for optimal T cell responses [72], but
can also degrade myelin directly [54,56]. Development of EAE had been
shown to involve mast cell accumulation in the rat brain [73] that could
be due to chemotactic activity elicited by RANTES [74] or MCP-1 [75]
secreted from either glial cells or infiltrating leukocytes. EAE was atten-
uated and delayed in W/W" mast-cell deficient mice [76], but was fully
restored upon mast cell reconstitution even in the apparent absence of
brain mast cell replenishment [77]. This effect apparently required mast
cells outside the brain [78], especially in the meninges [79]. The authors
concluded that brain mast cells are not important, but did not exclude
the involvement of perivascular mast cells and their ability to regulate
the permeability of BBB [80,81].

Interestingly, some recent data appear to suggest that mast cells
may also have a protective effect on EAE development. Specifically,
both activating and suppressing Fc receptors were recently shown
to be expressed on mast cells and regulate EAE disease severity in
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Fig. 1. Diagrammatic representation of the proposed interactions of mast cells with T-cells.

mice [82]. Myelin oligodendrocyte glycoprotein (MOG)3s_ss-induced
EAE was exacerbated in mast-cell deficient Kit"-*"W-" mice both at
high and low antigen protocols, while Kit"V/V-V mice were protected
when immunized with high, but not low doses of antigen [83]. In
addition, when the mast-cell deficient mice were reconstituted with
bone marrow derived mast cells, systemically, but not in the CNS,
they still developed exacerbated EAE [83]. Any protective role against
EAE may be exerted by Treg activation only in the brain. In fact, EAE in
Kit"V-sh/W-sh mice developed earlier with more severe clinical and path-
ological symptoms; reconstitution with mast cells reduced susceptibility
to the disease, and correlated with mast cell recruitment and T, activa-
tion in the CNS [84]. Yet, mast cell-derived TNF exacerbated mortality
during severe infection that was reduced in Kit“/*-V mast-cell deficient
mice [85]. Moreover, EAE development was reduced in TNF knock-out
mice [86], but became worse at a later date [86]. It is quite critical that
results obtained from mouse models should be interpreted cautiously
as they may not be readily applicable to humans [87].

4. Possible mechanisms to translate stress in MS risk
4.1. Stress and the HPA axis

Stress activates the hypothalamic-pituitary—adrenal (HPA) axis
through the hypothalamic secretion of corticotropin-releasing hormone
(CRH), which normally suppresses immune responses through the
release of glucocorticoids from the adrenals [88]. In this context, it has
been proposed that MS worsening with stress may be due to dysfunc-
tional HPA axis because of reduced production of adrenal steroids.
Impaired activation of CRH neurons was shown in those with active
MS lesions in the hypothalamus, where the disease course was more
severe [89]. Patients with secondary progressive MS also exhibit less
cortisol production in response to CRH stimulation [90]. The absence
of a normal cortisol response during systemic infection was reported
in patients with MS suggesting impaired cortisol secretion and a
reduced ability to control inflammation [91]. Despite the fact that clinical
conditions characterized by overproduction of pro-inflammatory cyto-
kines are associated with elevated circulating cortisol levels, this is not
observed in MS patients [92]. Development of glucocorticoid resistance
due to stress exposure may also result in increased CNS inflammation
[93].

A temporal framework has also been proposed in order to explain
the effects of stressful life events in patients with MS [94]. Specifically,
acute stress might have a permissive effect on MS exacerbation by facil-
itating BBB breakdown, while chronic stress may lead to glucocorticoid
resistance, making the immune cells less responsive to regulatory con-
trol by cortisol.

4.2. Stress, microglia and mast cells

CRH also has pro-inflammatory effects [95,96]. CRH affects brain
microvessels directly [97] and activates mast cells [97,98] leading to
increased BBB permeability which was absent in mast-cell deficient
mice [99,98]. We have also reported that CRH and NT which are
secreted under stress, synergistically stimulate mast cells leading to
increased vascular permeability [100] and blood-brain barrier (BBB)
disruption [101]. We further showed that NT stimulates mast cell
secretion of vascular endothelial growth factor (VEGF) [102], which in-
creases BBB permeability. NT also induces expression of CRH receptor-1
(CRHR-1) [103], activation of which by CRH increases the stimulation
of human mast cells [104]. Animal experiments showed that acute
stress led to BBB disruption in rats [105,106] and shortened the time
of onset of EAE [33]. In fact, EAE could not develop in CRH knockout
mice [107].

Stress activates microglia as well [108-110]. Specifically, exposure
of rats to cold stress provoked morphological activation of microglia
[108]. In addition, restraint stress combined with water immersion
stress induced morphological activation of microglia in the thalamus,
hypothalamus, hippocampus, substantia nigra, central gray, an effect
that was significantly reduced in rats null for IL-18 [109].

CRH induces the proliferation and TNF-« release by cultured rat
microglial cells [111]. Microglia also express neurotensin (NT) receptor
3 (NTR3) leading to their proliferation and gene expression of macro-
phage inflammatory protein-2 (MIP-2), MCP-1, interleukin-1beta and
TNF-a. [112]. SP receptors have been detected in both murine and
human microglia, activation of which by SP led to the activation of
NF-kB transcriptional factor [42].

Human microglia have also been shown to produce SP [42], which
is known to activate mast cells [113]. On the other hand, microglia
respond to pro-inflammatory signals released from mast cells [114].
Mast cell tryptase induces microglial activation and pro-inflammatory
mediator release of TNF-o, IL-6 and ROS [115]. Emerging evidence sug-
gests that mast cell-microglial interactions play an important role in
neuroinflammatory diseases [114]. Fig. 2 shows possible interactions
between stress, microglia, mast cells and brain inflammation.

5. Conclusion

There have been important new treatment options for MS patients
[116]. Moreover, recent evidence indicates that glatiramer acetate, in
addition to having an immunomodulatory [117] and a neuroprotective
effect [118], also decreases TNF-a while increasing IL-10 secretion and
promoting phagocytic activity of microglia [119].

However, addressing the effect of stress on MS is an entirely new
treatment option. For instance, in a study of 121 patients with relapsing
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Fig. 2. Diagrammatic representation of the effect of stress on brain inflammation and
the proposed interactions between microglia and mast cells.

MS, stress management therapy resulted in the reduction of the devel-
opment of new MRI lesions [120]. Additionally, in a study of 62 patients
with MS, it was shown that those who attended an 8-week stress-
management program experienced a decreased number of weekly
symptoms and mean intensity per symptom [121]. Moreover, publica-
tions using animal models reported that diazepam [34] or alprazolam
[31] can decrease or reverse the clinical and histological signs associated
with EAE. CRH antagonists [ 122] may also be useful since EAE could not
develop in CRH knockout mice [107].

Microglia [36] and mast cells [80,123] have been considered as the
next therapeutic targets for MS. However, there are no clinically avail-
able inhibitors of these cell types. Certain natural flavonoids, such
as quercetin, luteolin and apigenin have anti-oxidant and anti-
inflammatory effects [124]. These flavonoids also suppress TNF-a and
IL-6 expression and release from microglia [125-127], as well as mast
cell activation [128] and release of cytokines [129-131]. The flavonoids
luteolin and quercetin decrease the amount of myelin phagocytosed by
macrophages [132], as well as reduce EAE [133-135]. Luteolin also
inhibits mast cell-dependent T cell activation [136]. Apigenin sensitizes
activated human T cells to apoptosis and inhibits auto-antigen-
presenting cells necessary for the expansion and activation of Th17
cells in lupus [137]. Propolis, a flavonoid-containing substance, inhibits
IL-6 plus TGF-p-induced Th17 differentiation in vitro [138]. Luteolin
inhibits activated peripheral blood mononuclear cells and had synergistic
effect with IFN-3 [139,140] prompting the suggestion that luteolin may
be a reasonable adjuvant for MS treatment [139].

Authors' contributions
All authors have read and approved the final manuscript. TCT

designed and wrote most of the paper. AK and MA researched the
literature and prepared the manuscript.

Disclosures
Dr. Theoharides is the inventor of US Patents No. 7906153 covering

the use of flavonoids in the treatment of MS and No. 8268365 covering
the use of flavonoids in the treatment of brain inflammation.

Conflicts

The authors report no conflict of interest.

Take-home messages

* Human and animal studies show a correlation between stress and
relapses of multiple sclerosis.

Microglia and mast cells are involved in the pathogenesis of multiple
sclerosis.

* Stress activates microglia and mast cells through the release of the
neuropeptide neurotensin and corticotropin-releasing hormone.
Stress-induced activation of microglia and mast cells leads to BBB
disruption and brain inflammation.

Stress reduction as well as inhibition of microglial and mast cell
activation can prove to be a useful adjunct to the current treatments
of multiple sclerosis.
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