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PATHOBIOLOGY IN FOCUS

WNT signaling in glioblastoma and therapeutic
opportunities

Yeri Lee', Jin-Ku Lee?, Sun Hee Ahn', Jeongwu Lee® and Do-Hyun Nam'*

WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of
WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this
review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss
current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic
and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem
cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review
the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.
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WNT signaling has crucial roles in controlling self-renewal
and differentiation during central nervous system (CNS)
development. Neural stem cells (NSCs) are a central
component of the CNS, and are located in the fetal ventricular
zone, the postnatal subventricular zone, and the hippocampus.
WNT signaling is required for the development of NSCs.!?
Aberrant activation of WNT signaling in NSCs leads to
malignant transformation and development of brain
tumors.»>* For example, WNT3A was demonstrated to
upregulate WNT signaling activity and increase the clono-
genic potential of NSCs.! In addition, constitutive activation
of f-catenin increased the proliferation of mouse neural
progenitor cells in vivo, whereas deletion of f-catenin
decreased their proliferation.>® Collectively, these studies
indicate roles for WNT signaling in NSC self-renewal and
proliferation.

Glioblastoma (GBM) has been designated by the World
Health Organization as a grade IV cancer, and is the most
common and lethal CNS tumor in adults.”® Currently, the
standard-of-care treatment for GBM patients consists of
maximal surgical resection followed by concurrent irradiation
and chemotherapy.” Temozolomide (Temodal), a DNA
alkylating agent, is the most commonly used chemother-
apeutic agent. Despite these therapies, most patients
eventually relapse. There is therefore an urgent clinical need
for the development of effective anti-GBM therapeutics.

The prognosis for GBM patients is uniformly poor. GBM
tumors harbor a profound degree of heterogeneity; inter- and
intra-tumoral heterogeneity of GBM can be attributed to
genomic and molecular diversity of tumors, as well as cellular
hierarchy. Recent large-scale genomic studies have provided
comprehensive genetic and molecular profiles of GBM.®10:11
Prominent genomic alterations frequently found in GBM
include loss-of-function of tumor suppressors in the p53,
phosphatase and tensin homolog and neurofibromatosis 1,
and hyperactivation of receptor tyrosine kinase (RTK)
signaling, including epidermal growth factor receptor
(EGFR), platelet-derived growth factor receptor, and the
receptor for hepatocyte growth factor (MET).®10-12 [n
addition, molecular subtypes of GBM have been identified,
largely based on the expression profiling analyses of GBM
specimens. The most robust GBM subtypes that have
consistently been identified in multiple studies are the
proneural and mesenchymal subtypes.!®!>~1> On the other
hand, GBM also appears to have a cellular hierarchy, whereby
there exists a subpopulation of GBM cells that are enriched
with the capacity for tumor initiation and propagation, and
these cells drive tumor growth and treatment resistance.'®~!?

A large number of studies have suggested that WNT
signaling is aberrantly activated in GBM and that it promotes
GBM growth and invasion via the maintenance of stem cell
properties.?®~2%> Here, we will review recent studies from the
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literature that have described the functions of WNT/f-catenin
signaling in development and cancer, with particular
emphasis on?* genetic and epigenetic alterations that lead
to aberrant WNT pathway activation in GBM. We will then
discuss the development of therapeutic approaches based on
the inhibition of WNT activation and the current status of
clinical trials based on agents targeting the WNT pathway.

OVERVIEW OF WNT SIGNALING

WNT proteins are a family of highly conserved secreted
signaling molecules. Since the discovery of WNT signaling as
an oncogene in mouse breast cancer models in 1982,30 WNT
signaling has emerged as a critical regulator of cell—cell
interactions, cell fate decision, and migration. Mutations in
WNT pathway components lead to specific developmental
defects, whereas aberrant WNT signaling often leads to
cancer. WNT proteins bind to receptors of the frizzled (FZD)
and low-density lipoprotein receptor-related protein/alpha
2-macroglobulin receptor (LRP) families on the cell surface.
Through several cytoplasmic components, the signal is
transduced to f-catenin, which enters the nucleus and forms
a complex with T-cell factor (TCF) to activate transcription
of WNT target genes (canonical pathways). Non-canonical
WNT pathways are f-catenin-independent, and are most
often linked with the establishment of polarity and
cytoskeleton-mediated processes. A simple diagrammatic
overview of WNT signaling is shown in Figure 1.

Canonical WNT Signaling

The canonical WNT signaling cascade is a key regulator in
embryonic and adult stem cells. This signaling is initiated by
the binding of WNT ligands to cysteine-rich domains of the
FZD and LRP families on the cell surface. Activation of these
receptors leads to disassembly of the complex consisting of
AXIN, adenomatous polyposis coli (APC), and GSK3p,
thereby stabilizing p-catenin. As a result, f-catenin is
translocated from the cytoplasm into the nucleus where it
forms a complex with T-cell factor/lymphoid enhancer factor
(TCF/LEF) and promotes transcription of multiple target
genes including c-MYC and cyclin D1.>1:32 A recent report
showed that FoxM1 promotes nuclear translocation and
stabilization of f-catenin in GBM, via binding to cytoplasmic
f-catenin, suggesting that FoxM1 can activate canonical WNT
signaling in a ligand-independent manner.>?

Non-Canonical WNT Pathway

Non-canonical WNT signaling, currently defined as the
f-catenin-independent pathway, mainly affects cell polarity
and WNT-Ca** pathways.>*3¢ These pathways have been
reported to contribute to developmental processes including
planar cell polarity in Drosophila, convergent extension
movements during gastrulation, and cell migration of
neuronal and epithelial origin.**37-*8 Binding of WNT ligands
(WNT4, WNT5A, and WNT11) to the FZD receptor induces
recruitment of Dishevelled (Dvl) and Dvl-associated activator
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of morphogenesis 1 (Daaml). This complex initiates a
cascade that activates Rac and Rho GTPases to mediate
asymmetric cytoskeletal organization and polarized cell
migration. The other type of non-canonical WNT signaling
is related to calcium signaling. Binding of WNT ligand to the
FZD receptor promotes recruitment of Dvl in complex with a
G-protein, resulting in G-protein-dependent release of Ca**.
Intracellular calcium release activates protein kinase C and
calmodulin-dependent protein kinase 2. Increased Ca** can
stimulate the activation of calcineurin (Ca®*-dependent
serine/threonine phosphatase), leading to accumulation of
nuclear factor of activated T cells in the nucleus.’**

GENETIC/EPIGENETIC ALTERATIONS OF WNT SIGNALING
COMPONENTS

As mentioned above, aberrant WNT pathway activation is
found in various type of cancer including GBM. Mutations in
WNT signaling components (APC, f-catenin, AXIN, WTX,
TCF4) can be the cause of WNT pathway activation in these
tumors.*'™> In colorectal cancer, mutations in WNT
signaling components have been extensively characterized.
Approximately 85% of colorectal tumors have mutations in
APC, whereas an activating mutation in f-catenin was
observed in 50% of colorectal tumors lacking APC
mutations.**~*8 APC is a negative regulator of WNT pathway
activation. Accordingly, most APC mutations are loss-of-
function mutations. Similar to colon cancer, mutations in
WNT signaling components (f-catenin, APC, and AXINI)
have been identified in medulloblastoma (a brain tumor
primarily originating in the cerebellum).**->° Recent large-
scale genomic studies showed that f-catenin mutations in
exon 3, corresponding to its phosphorylation site were found
in 18-22% of medulloblastoma cases.’> An additional 5%
had mutations in APC or AXIN1.°>> g-Catenin mutations
detected in hepatocellular carcinoma and medulloblastoma
led to the disruption of phosphorylation and degradation
of f-catenin, resulting in hyperactivation of WNT
signaling.*>#*>4 Thus, the mutation status of the above
WNT signaling components is an indicator of WNT
activation in tumor.

In sharp contrast to colon cancer and medulloblastoma, no
genomic mutations have been found in f-catenin and APC in
GBM.>>>¢ Recently, Morris et al identified a homozygous
deletion of FAT Atypical Cadherin 1 (FAT1), a negative
effector of WNT signaling, in GBM. Copy number loss of
FAT1 was found in nearly 20% of GBMs; WNT signaling-
associated genes were enriched in this subset of GBMs,
suggesting that FAT1 loss is a critical molecular event for
WNT activation in GBM. The frequency of FAT1-inactivating
mutations in GBM is about 1%, according to TCGA data set
analysis.

Epigenetic silencing of negative effectors of WNT pathways
can activate WNT signaling and contribute to malignant
behavior in GBM. Soluble Frizzled-related proteins (FRPs)
are soluble proteins that bind to WNT and interfere with
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Figure 1 Overview of WNT signaling pathway. The WNT signaling pathway has crucial roles in cancer cells, which is shown as follows. (Left) WNT
signaling is inactivated in the absence of WNT ligands. Under these conditions, B-catenin forms a complex with Dishevelled, AXIN, APC, and GSK3p.
B-Catenin is phosphorylated by GSK38 and then degraded by the proteasome. (Middle) Canonical WNT signaling is depicted, ie, signaling dependent on
B-catenin. Unphosphorylated B-catenin is shuttled into the nucleus, leading to transcriptional activation of WNT signaling-target genes. (Right)
Non-canonical WNT signaling consists of the planar cell polarity (PCP) and Ca* pathways. The PCP signaling pathway has relevance for cell survival

and skeletal rearrangement. The nuclear factor of activated T-cell-mediated Ca®* signaling pathway is concerned with intracellular Ca®* release and cell

fate regulation.

WNT signaling. Dickkopf (DKK) acts as an antagonist of
WNT signaling via binding to its co-receptor LRP.>” Indeed,
epigenetic silencing of WNT pathway inhibitor genes
frequently occurs in gliomas, including promoter hyper-
methylation of sFRPs (sFRP1, sFRP2, sFRP4, sFRP5),
Dickkopf (DKKI1, DKK3) and Naked (NKD1, NKD2). In
GBM, promoter hypermethylation of sFRP1, sFRP2 and
NKD2 occurred in more than 40% of primary GBM
specimens.®® Roth et al reported the role of sFRP in the
proliferation and migration of glioma cells.’® In this study,
ectopic expression of sFRP reduced glioma cell motility by
decreasing MMP2. DKK1 promoter hypermethylation was
identified in 50% of secondary GBM.>*% Collectively, these
studies indicate that epigenetic alterations but not genomic
mutations of WNT signaling components have major roles in
WNT activation in GBM.

WNT SIGNALING IN GBM STEMNESS

WNT Signaling in Stem Cells

It is well-established that WNT signaling regulates stemness
and stem cell niches in normal cells.®>%? For instance,
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intestinal stem cells harboring a TCF4 mutation could not
sustain self-renewal of stem cells, resulting in the regression of
intestinal tissues.®’ In the hair follicle system, ectopic
expression of DKK caused a deficit of hair follicles and
mammary gland, indicating the role of WNT signaling in
stem cell niches.®? In contrast, activation of WNT signaling by
forced expression of a mutant f-catenin increased stem cell
pools in the hair follicle.®3

The cancer stem cells (CSCs) model posits a cellular
hierarchy, in which CSCs mainly drive tumor initiation and
propagation. Some tumors may not follow the CSC model
and there are ongoing controversies regarding the CSC
immuno-phenotype, the reversibility of the stem cell state,
and cell-of-origin.!”*%4 Characteristics that are often associated
with CSCs include the capacity for self-renewal, similarity
with normal stem cells, and tumorigenicity in vitro/vivo.%>
Several studies have shown that inhibition of WNT signaling
via modulation of f-catenin, LEF and TCF impeded the
clonogenic growth of various cancer cells.®*7" In addition,
WNT inhibitory factor 1 (WIF1) induced cellular senescence,
thereby impeding stemness and tumor growth.%” As two
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Figure 2 Multiple roles of WNT signaling. The role of WNT signaling in GBM is summarized. The roles of WNT signaling in GBM are categorized as
follows: (1) maintenance of glioblastoma stem cells, (2) enhancement migration and invasion, and (3) induction of multi-drug resistance. WNT signaling
regulators (such as PLAGL2, FoxM1, Evi/Gpr177, and ASCL1) lead to WNT signaling activation and thus increased self-renewal capacity (left). WNT
signaling activation upregulates the expression of EMT-related genes (ie, ZEB1, SNAIL, TWIST, SLUG, MMP, and N-cadherin), resulting in enhanced the
migration and invasion of GBM cells (middle). Despite chemo- and radiotherapy, upregulation of WNT signaling by a mediator (eg, DNA repair genes)

promotes tumor regrowth and recurrence (right).

recent papers have provided excellent reviews of WNT
signaling and CSCs,”"7? this review focuses on studies
conducted in GBM.

WNT Signaling in GBM Stem Cells (GSCs)
Despite controversies in some tumor models, numerous
studies support the theory that GSCs are the critical cell
population that contributes to GBM malignancy, therapeutic
resistance to standard therapies, and recurrence'®7374
(Figure 2). Regulatory connections between WNT signaling
and GSCs have been elucidated in the following studies. A
study from Depinho group found that PLAGL2 on chromo-
some 20q11.21 is amplified in primary GBM specimens and
GBM cell lines.”> PLAGL2 maintained the self-renewal ability
of GBM cells, while restraining NSC differentiation. Over-
expression of PLAGL2 in astrocytes and GBM cells led to
upregulation of WNT signaling components, including
WNT6, FZD9, and FZD2. Thus, PLAGL2 appears to be
important for stem cell maintenance and gliomagenesis via
activation of canonical WNT signaling.”>7®

Another recent report showed the involvement of WNT
signaling in GSCs via FoxM1.%* In this study, the authors
showed that FoxM1 promotes f-catenin nuclear translocation
by directly binding to f-catenin. Accordingly, the expression
level of nuclear FoxM1 correlated with that of nuclear
f-catenin in GBM patient specimens. High levels of FoxM1 in
GSCs have also been reported elsewhere, in which FoxM1 was
shown to be phosphorylated by MELK, a GSC-enriched
kinase, and to promote self-renewal and chemo-resistance
of GBM cells.”” In addition, FoxM1 appears to selectively
bind to the promoter of Sox2, a master regulator of
GSC  self-renewal, and promotes stem cell transcription
programs in GSCs.”®
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Rheinbay et al performed a comparative analysis of
chromatin state in GSCs compared with the entire tumor
and identified a set of developmental transcription factors
unique to GSCs. They found that a human achaete-scute
homolog (ASCL1) activates WNT signaling in GSCs by
repressing the negative regulator DKK1.”° Given that aberrant
WNT activation in GBM is mediated by epigenetic regulation
rather than genetic mutations, genome-wide epigenetic
profiles will likely yield more insights in stem cell controlled
mechanisms including the WNT pathway in GSCs. In
addition, Bartscherer et al found that a conserved seven-
pass transmembrane protein, Evi, is involved in the secretion
of WNT ligands in Drosophila and human cells, affecting both
canonical and non-canonical WNT signaling pathways.50-82
Moreover, they showed that Evi was strongly expressed in
gliomas and that Evi depletion in glioma cell lines impeded
cellular proliferation, clonogenic growth, and invasion.®!

Other studies have shown that WNT signaling components
such as Frizzled and Dishevelled 2 (Dv12) are overexpressed in
GBM, and that these genes promoted clonogenic growth and
stem-like characteristics of GBM cells.>*® Although most
studies have addressed canonical WNT signaling, several
studies have indicated the involvement of both canonical and
non-canonical WNT signaling,?>8?

WNT SIGNALING IN GBM INVASION

Tumor metastasis is a major factor contributing to tumor-
associated death. Epithelial-mesenchymal transition (EMT) is
a critical process that enables cancer cells of epithelial origin
to metastasize to distal organs. Unsurprisingly, WNT
signaling is involved in both tumor invasion and EMT.
Several studies have shown that WNT signaling activation
enhances the motility of bladder, breast, and pancreatic
cancer cells.3¥87 Overexpression of positive WNT signaling
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regulators was found to increase the expression of
EMT-associated genes, such as ZEB1, SNAIL, TWIST, SLUG,
and N-cadherin, indicating the role of WNT in EMT88-94
(Figure 2). For example, ectopic expression of a constitutively
active f-catenin induced the expression of ZEB1 in GBM
cells and increased cell motility.!* Conversely, inhibition of
f-catenin suppressed cellular invasion in U87MG and LN229
GBM cells.”

In addition, WNT5A was shown to induce migration in
GBM cells by activating a f-catenin-independent pathway.
WNTS5A knockdown in glioma cells significantly inhibited the
migratory capacity of these cells without affecting prolifera-
tion kinetics.”® Consistent with this, expression of a
recombinant WNT5A protein stimulated migration in GBM
cells via increase of MMP2 activity.”® Similar observations
have been made using other WNT regulators such as WNT2
and FZD2.%97

In comparison with other solid tumors, GBM rarely
metastasizes to other. However, GBM tumor cells disseminate
widely into the neighboring brain parenchyma. The invasive
and infiltrative growth pattern of GBM makes it almost
impossible to perform radical, maximal tumor resection. The
involvement of WNT signaling activation in GBM invasive-
ness was shown in a recent report.68 In this study, the authors
enriched highly invasive GBM cell populations through serial
in vivo transplantation assays and analyzed mRNA expression
profiles of these populations. FZD4, a positive WNT
regulator, was identified and shown to be a causative effector
for invasive phenotypes of GBM cells.®® Together, these
findings collectively indicate that WNT signaling has critical
roles in GBM invasion and provide a rationale for targeting
WNT signaling as a potentially effective anti-GBM therapeu-
tic approach.

WNT SIGNALING IN THERAPEUTIC RESISTANCE
Most cancers develop resistance to radiotherapy and chemo-
therapy. Several studies have suggested that the activation
of WNT signaling induces drug resistance in various cancers,
including ovarian, colon and pancreatic cancer®®1%0
(Figure 2). For example, WNTS5A was upregulated in
oxaliplatin-resistant ovarian carcinoma cell line.”® Ectopic
expression of WNT5A conferred greater resistance of ovarian
cancer cells to paclitaxel, 5-fluorouracil, epirubicin, and
etoposide.!®” WNT5A activated Akt signaling and rendered
colon cells resistant to histone deacetylase inhibitors.!?!
Conversely, inhibition of WNT5A led to increased drug-
induced apoptosis in pancreatic cancer.!%? In GBM, Auger
et al reported that WNT signaling promotes resistance to
temozolomide, a standard chemotherapeutic agent for GBM
patients. Activation of WNT signaling components such as
FZD2 was also demonstrated in temozolomide-resistant
subclones.!%3

WNT signaling also contributes to radioresistance of cancer
cells.!04-106 T breast cell models, stabilized p-catenin
selectively reinforced mammosphere formation and enhanced
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radioresistance in the Scal* subpopulation compared with the
corresponding Scal™ cells.!%>1%¢ TCF4 was also shown to be
required for radioresistance of colorectal cancer cell lines.!?”
In GBM, Bao et al showed that CD133" GSC-enriched cells
were more resistant to irradiation than CD133™ cells; that was
due in part to the enhanced DNA repair capacities of CD133™"
cells.!®® These results imply that CDI133" tumor cell
population confers radioresistance to GBM and most likely
contributes to GBM recurrence. Similarly, Zheng et al showed
that FoxM1 promotes GBM resistance via upregulation of
Rad51, a critical component of the DNA damage repair
process.'? Using in vivo orthotopic xenograft tumor models
combined with in vivo irradiation, Kim et al have obtained
gene signatures that are highly enriched in radioresistant
GBM cells compared with the parental tumor cells.'!
Radioresistant GBM cells expressed high levels of WNT
signaling-related genes, such as WISP1, FZD1, LEF1, TCF4,
WNT9B, and AXIN2. Inhibition of the WNT pathway by
XAV939, a WNT signaling inhibitor, sensitized GBM cells to
irradiation.

CROSS-TALK BETWEEN WNT AND OTHER SIGNALING
PATHWAYS IN GBM

RTKs promote GBM survival, proliferation, and invasion.
Hyperactivation of RTK signaling because of genomic
amplification and/or activating mutations of RTKs occurs in
more than 90% of GBMs.!>!!! Amplifications or somatic
mutations in EGFR, platelet-derived growth factor receptor,
FGFR, and MET often correlate with GBM subtypes.'® In this
section, we will address the potential relationships between
WNT signaling and these RTK signaling pathways (Figure 3).

Cross-talk with EGFR Signaling Pathway
EGFR amplification and hyperactivation were observed in
60% of GBM patients.!127115 Several activating mutations,
most notably the EGFRvIII mutation, were also observed in
GBM and are known to contribute to cancer development.
Activation of EGFR induces downstream mitogenic signaling,
such as the mitogen-activated protein kinase, phosphatidyli-
nositol 3-kinase/Akt, and transducers and activators of
transcription (STAT) pathways,!!>116

Bioinformatic analysis with Search Tool for Retrieval of
Interacting  Genes/Proteins  (STRING) indicated that
f-catenin is associated with several genes, including Aktl,
CCNDI, JUN, tumor suppressors in the p53, and VEGFA.%
Moreover, multiple signaling pathways, including the
mitogen-activated protein kinase, insulin, focal adhesion
and adherens junction and ErbB pathways, were proposed
as f-catenin-related pathways. Based on these analyses, several
studies attempted to find a relationship between the EGFR
and WNT pathways. One study showed that p-catenin
inhibition in GBM cell lines (U87MG and LN229) led to
downregulation of EGFR, STAT3, Aktl, MMP2 and MMP9,
FRA-1, and ¢-MYC. In another study, TCF4 downregulation
reduced Aktl expression by binding to the Aktl promoter,
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Figure 3 Cross-talk with other signaling pathways. Cross-talk with EGFR and MET signaling pathways are as follows. Ligand-mediated EGFR activation
leads to CK2a phosphorylation, resulting in disassembly of a-catenin/B-catenin complex. (Left) Although the detailed mechanism is not precisely
understood, it is known that MET activation increases the stability of B-catenin. The free cytoplasmic S-catenin is stabilized and translocates into the
nucleus. Nuclear B-catenin binds to TCF/LEF transcription factor, which induces the expression of WNT signaling-target genes.

indicating a link between AKT signaling and the WNT
pathway.'”

Several reports have indicated that EGF signaling is an
upstream regulator of the WNT pathway.!!®11® EGF-induced
ERK2 upregulation resulted in phosphorylation of CK2a, and
then CK2a with, and subsequent phosphorylation of,
a-catenin at S641.!'"" CK2a-mediated phosphorylation of
a-catenin released a-catenin from binding to p-catenin,
which led to shuttling of the latter into the nucleus where it
formed a f-catenin/TCF/LEF complex. In addition, chronic
EGF treatment resulted in downregulation of transcription of
caveolin-1 and E-cadherin.''® Loss of caveolin-1 induced
f-catenin transactivation, whereas depletion of E-cadherin
prevented cell—cell connection and induced EMT.

Cross-talk with MET Signaling Pathway
Hepatocyte growth factor receptor (MET) has crucial roles in
cancer growth, stem cell maintenance, and metastasis.'2%12!
In GBM, expression levels of MET correspond with poor
patient survival and malignancy.®!?? In addition, analyses of
clinical GBM specimens revealed a positive association
between MET expression and invasiveness-related genes
(MMP2 and MMP9) and proto-oncogenes (c-MYC, KRAS,
and JUN).8

Several lines of evidence suggest that the MET signaling
pathway is connected to WNT signaling in cancer, although
this cross-talk in GBM is not been yet fully understood. Kim
et al showed that activation of MET signaling by the addition
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of HGF-induced nuclear translocation of f-catenin. More-
over, MET inhibition by small molecules led to blockade of
p-catenin nuclear translocation and TCF/LEF promoter
activity,'?> suggesting the possibility that MET signaling is
an upstream regulator of WNT signaling.

Cross-talk with Sonic Hedgehog (SHH) Signaling Pathway
SHH signaling is a key pathway for cellular proliferation and
tumorigenesis.!?*"12® Molecular classification studies on
medulloblastoma revealed that SHH and WNT are prominent
signaling pathways that drive the formation of distinct tumor
subgroups.!?128 GLI1 in medulloblastoma cells physically
interacted with f-catenin and led to its degradation,
supporting the possibility that SHH and WNT may not be
co-activated in these tumors.'? Indeed, mutations in SHH
signaling components (eg, PTCH1 and SUFU), which led to
aberrant SHH signaling activation, were found in 30% of
medulloblastoma patients.!3°

Although alterations of SHH signaling components and
amplification of chromosome 12q region that contains GLI1
were rarely founded in gliomas,'*!71% activation of SHH
pathways in GBM has been reported. For instance, blockade
of SHH signaling with the chemical inhibitor Vismodegib
induced cell cycle arrest and apoptosis, and downregulated
GLI1 expression in patient-derived GBM cells.!*® Several
studies have suggested that SHH signaling has a suppressive
effect on WNT signaling.!*»137138 For example, it was
reported that GLI1 binds to the sSFRPI1 promoter and increases
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Figure 4 The multiple roles of WNT signaling in GBM. WNT signaling is one of the key signaling pathways in GBM. No genetic alterations of WNT
signaling components were identified, whereas hypermethylation of WNT signaling repressors is observed in about 40-50% of GBM patients. WNT
signaling has multiple roles during CNS development and gliomagenesis. The roles of WNT signaling are as follows: (1) stemness maintenance,

(2) migration and invasion, and (3) induction of therapeutic resistance. Thus, therapeutic approaches that target WNT signaling will be important for

eradication of GSCs and overcoming the resistance to standard therapies.

sFRP1 mRNA expression in GBM. Further studies are
warranted to decipher the cross-talk between SHH signaling
and WNT signaling in GBM.

TARGETING THE WNT SIGNALING PATHWAY IN GBM

Expression levels of WNT pathway genes have been found
by multiple research groups to be associated with a poor
prognosis in glioma patients. Through RT-PCR and immuno-
histochemical staining, expression levels of WNT components
were analyzed.31 mRNA expression of f-catenin, Dvl3, and
cyclin D1 were significantly higher in glioma specimens
compared with non-tumor brain tissue. Moreover, protein
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levels of f-catenin, TCF4, LEF1, c-MYC, n-MYC, ¢-JUN, and
cyclin D1 were correlated positively with the degree of glioma.
Among these components, f-catenin had a significantly
positive correlation with TCF4 and LEF1. In a different
study, expression of WNT1, f-catenin, and cyclin D1 was
associated with malignancy and clinical outcomes of GBM
patients.’? Recent genomic studies have identified genetic and
molecular heterogeneity between tumors and within GBM
tumors. LEF1, a key effector of WNT signaling, appeared to
regulate intra-tumoral heterogeneity, indicating a widespread
interplay between this WNT signaling-related transcription
factor and GBM driver pathways.”®!3
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Table 1 Expression of WNT signaling-related genes

Cell or tissue Method Genes Regulation Reference

1 PLAGL2-overexpressing astrocyte and GBM cells with PLAGL2 amplification RT-PCR WNT6 Upregulation 75
FZD9
FZD2
2 NHA with ASCLT overexpression, compared with NT RT-PCR TLET Upregulation 79
AXIN2
DKK1 Downregulation
FZD5
LRG5
TCF7
TF7L1
GBM cells, compared with NHA Microarray ASCLT Upregulation
DKK1 Downregulation
3 Highly invasive GBM cells (U87R4), compared with non-invasive GBM cells (U87L4)  Microarray RANKT Upregulation 68
DISC1
CD44
FZD4
Caspase3 Downregulation
SMAD6
MAML3
PDCD4
4 GBM cells and U87MG with constitutive S-catenin S33Y RT-PCR ZEB1 Upregulation 14
TWIST
N-cadherin
SNAIL
5 Radioresistant U373, compared with NT Microarray WISPT Upregulation 110
FZD1
APC
LEFT
TCF4
CTNNBIP1
WNT9B Downregulation
AXIN2
6 U87 and LN229 cells with B-catenin downregulation STRING analysis and RT-PCR  AKT1 Downregulation 95
CTINND1
JUN
VEGFA
LN229 xenograft tumor from B-catenin siRNA-treated mice IHC EGFR Downregulation
AKT (phospho-, total)
STAT3
MMP2
MMP9
7 Patient-derived GBM cells with high MET expression, compared with MET Microarray CD44 Upregulation 123
low population
CCND1
TCF7
MYC
LEFT

Gene expressions by regulating EMT, stemness and WNT-related genes are altered as follows.
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Table 2 Clinical trials of candidate NSAIDs in human cancer
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Compound  Tumor type Identifier Phase  Detailed description
Aspirin Esophageal cancer NCT02326779 3 Effect of low-dose aspirin on survival of esophageal cancer patients
Colorectal cancer NCT00224679 3 Efficacy test of regular low-dose aspirin in reducing the recurrent tumor of colorectal
adenomatous polyps
NCT00002527 3 Examination of chemo-preventive effect to reduce risk of colorectal cancer
NCT02394769
NCT02125409 3
NCT00983580 2
NCT00062023 2 Safety/efficacy test of NSAIDs in colorectal cancer
Breast cancer NCT00727948 Examination of anti-angiogenic effect in breast cancer patients
NCT01431053 2 Efficacy and safety test of aspirin as the adjuvant treatment in breast cancer patients
NCTO1612247 2/3 Safety/efficacy study of cyclophosphamide and methotrexate in combination with
aspirin treatment in breast cancer
Lung cancer NCT01058902 3 Efficacy study of aspirin on survival of NSCLC
Prostate cancer NCT02420652 2 Examination of anti-proliferation effect in prostate cancer patients
NCT00316927 3 Examination of anti-proliferation effect of locally advanced or metastatic prostate cancer
Diclofenac Basal cell carcinoma NCT01358045 Efficacy test of NSAIDs in basal cell carcinoma
Breast cancer NCT01596647 1 Examination of dovitinib—drug interaction effect on the pharmacokinetics of a cocktail
including caffeine, diclofenac, omeprazole, and midazolam
Celecoxib Head and neck cancer NCT00058006 2 Examination of chemo-preventive effect to reduce risk of recurrent cancer

and Lung cancer

NCT00052611
NCT00527982
NCT00400374 1
NCT00061906 2
NCT00581971 1b/2
NCT00177853 1

Head and neck cancer

Pancreatic cancer

Examination of toxicity/efficacy test as adjuvant therapy

Examination of tumor prevention effect on Erlotinib (OSI-774, Tarceva)
Safety/anti-proliferation efficacy study of celecoxib in differentated thyroid cadinoma
Radiosensitizing effect with radiation treatment

Safety/efficacy study of celecoxib and irinotecan combination effect concurrent

radiation treatment

NCT00137852 2
NCT00520091
NCT00112502 2

Esophageal cancer

Glioblastoma

Safety/efficacy study of celecoxib treatment combined with irradiation

Examination of anti-proliferation effect with radiation treatment

Clinical information pertaining to aspirin, diclofenac, and celecoxib in various cancer types is available at the following website: https:/clinicaltrials.gov.

The above studies collectively indicate that WNT targeting
can be an effective therapeutic approach against GBM
(Table 1). WNT signaling inhibitors have been identified
and demonstrated therapeutic efficacy in various human
cancers.'40-149 However, relatively little is known about
clinically applicable WNT inhibitors for the treatment of
GBM. In this section, we introduce a list of WNT signaling
inhibitors that can be potentially used for anti-GBM therapy.
Several drugs targeting WNT signaling have been or are being
developed for clinical trials. These drugs can be largely
classified into three groups: (1) non-steroidal anti-inflamma-
tory drugs, (2) small-molecule chemical inhibitors, and (3)
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therapeutic antibodies that target various WNT pathway
components (Figure 4).

Nonsteroidal anti-inflammatory drugs (NSAIDs) have
been used to treat treating inflammation, pain, and fever.
NSAIDs inhibit the activity of the prostaglandin biosynthetic
enzymes, the cyclooxygenase isoforms (COX-1 and COX-2).
However, NSAIDs have shown anti-cancer effects as well as
anti-inflammatory effects, and cross the blood-brain barrier
efficiently.’>»!>! Therefore, NSAIDs have attracted much
attention as potential anti-cancer agents. (Table 2) Aspirin
is a fat-soluble small molecule that is used to relieve pain.
Several studies have proposed that aspirin inhibits the
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Developmental  Type Target Tumor type Detailed description Reference
agents
SEN461 Small-molecule inhibitor  AXIN Glioblastoma ~ SEN461 protected AXIN degradation, causing f-catenin loss 158
XAV939 Small-molecule inhibitor ~ Tankyrase  Glioblastoma ~ XAV939 inhibited TNK degradation, increasing AXIN stability 110
Thiazolidinedione  Small-molecule inhibitor ~ B-Catenin ~ Colon cancer  Thiazolidinedione inhibited cellular proliferation and metastasis 144
ICG-001 Small-molecule inhibitor ~ B-Catenin  Colon cancer  1CG-001 downregulated survivin and cyclin D1 expression by 148
disrupting the interaction between f-catenin and CBP
Artificial F box Small-molecule inhibitor ~ B-catenin Colorectal A chimeric F box protein (CFP) lead to in vitro/vivo growth 149
protein cancer inhibition by nuclear B-catenin destruction
Small-molecule inhibitor ~ S-catenin Colon cancer A chimeric F box fusion protein reduced the -catenin, which 147
downregulated TCF/LEF promoter activity
Inhibitors of Small-molecule inhibitor ~ AXIN2 Colorectal IWRs stabilized AXIN2 via interacting with AXIN2 protein, which 146
WNT response cancer induced B-catenin degradation
Inhibitors of Small-molecule inhibitor ~ Porcupine  Colorectal IWPs was as a Porcn inhibitor, which blocked palmitoylation of
WNT production cancer WNT ligands
FJ9 Small-molecule inhibitor ~ FZD7 Lung cancer FJ9 inhibits the canonical WNT signaling, interrupting the 143
interaction between FZD7 and Dvl.
WNT monoclonal  Monoclonal antibody WNT1 Lung cancer Anti-Wnt-1 suppressed cellular growth of lung cancer cells in vitro 161
antibodies and in vivo
Monoclonal antibody WNT1 Colorectal WNT1 monoclonal antibody reduced the clonogenic potential 140
cancer and TCF/LEF promoter activity
Monoclonal antibody WNT2 Melanoma WNT2 monoclonal antibody inhibited in vitro/vivo proliferation 141
and WNT signaling activation, whereas it induced cellular
apoptosis
pAb5a-5 Polyclonal antibody WNT5A Gastric cancer  pAb5a-5 inhibited migration of gastric cancer cells and 162
WNT5A-dependent Racl activation
SFRP2 Mab Monoclonal SFRP2 Angiosarcoma,  SFRP2 antibody inhibited tumor growth and migration 163
Antibody Breast cancer
Foxy-5 Peptide FzD5 Murine breast  Foxy-5 inhibited metastasis capacity of mouse breast cell lines 164
cancer
MAb92-13 Murine monoclonal FZD10 Synovial MADB92-13 bound to FZD10 and exhibited anti-tumor effect 165
antibody sarcoma
TT641 Polyclonal FZD10 Synovial TT641 decreased in vivo/vitro proliferation 142
sarcoma

Small molecules and antibodies targeting WNT signaling are listed, along with their mechanisms of action.

proliferation of cancer cell lines that do not express COX-1
and COX-2.152 Previous studies have suggested that aspirin
downregulates WNT signaling in colorectal cancer cells.!>?
It has been confirmed that daily aspirin treatment for
5 years or longer reduces the risk of colon cancer.!>*1%¢ In
GBM, aspirin inhibited proliferation and invasiveness and
increased apoptosis via GO/G1 arrest in U87MG and A172
cells. These effects were driven by downregulation of WNT
signaling. Following treatment with aspirin, TCF/LEF pro-
moter activity and expression of WNT signaling-target genes

146

(c-MYC, Cyclin D1, and FRA-1) were decreased in GBM
cell lines.!>” Diclofenac is one of the traditional NSAIDs
and functions through inhibition of COX-1 and COX-2,
whereas Celecoxib is a newly generated drug and selectively
inhibits COX-2 activity. Treatment with these drugs reduced
proliferation, colony formation, and migration of glioma
cells.!>8

Recent chemical screening efforts have identified several
small-molecule inhibitors and antibodies targeted at WNT
signaling (Table 3).">° A random selection of 16000 small
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molecules were used in the screening. SEN461 was selected as
a potent WNT signaling inhibitor and validated the molecular
mechanism of action. SEN416 prevented proteosomal
degradation of AXIN. Through the stabilization of AXIN,
cytoplasmic level of phosphorylated f3-catenin were increased,
accompanied by a loss of total f-catenin. Experimentally,
SEN461 was largely responsible for growth inhibition by
suppressing WNT signaling in GBM cells. XAV939 is an
antagonist of Tankyrase (TRF-1, TNK) by inhibiting its
interaction with AXIN and regulating its stability. TNK
enzyme activity mediated AXIN ubiquitination and proteo-
somal degradation. XAV939 controlled WNT signaling by
increasing AXIN stabilization.!®® Kim et al have shown that
XAV939 potently inhibited WNT signaling in radioresistant-
U373 GBM cells.!'? However, no clinical progress of SEN461
or XAV939 has been reported to date.

Antibodies targeting WNT signaling are categorized as
follows: anti-ligand antibodies that trap and neutralize WNT
ligands (WNT1, 2, 5A, and sFRP2)!40:141.161-163 and anti-FZD
antibodies (FZD5 and FZD10).14%164165 Most antibodies
suppressed in vitro/in vivo proliferation and migration of
lung, colorectal, gastric, and breast cancer cells. To increase
the ability of therapeutic antibodies to penetrate the blood—
brain barrier, new approaches (ie, nanoparticle conjugation
and antibody engineering) are under investigation in the
realm of therapeutic antibody development.'66:167

CLOSING REMARKS

WNT signaling contributes to GBM pathology at multiple
levels including tumor initiation, maintenance of stem cell
status, invasion, and therapeutic resistance. Although GBMs
do not harbor genetic alterations in WNT signaling
components, aberrant activation of WNT signaling
appears to be achieved mainly by epigenetic silencing of
negative WNT regulators and overexpression of positive
regulators. Although WNT pathways have proven difficult to
target, recent progress has been made in generating
multiple agents that can potently inhibit WNT activation in
preclinical models. Accumulating further data to support the
crucial roles of WNT in GBM may increase the feasibility
of WNT inhibition as a therapeutic approach to treat GBM
patients.
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